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Three techniques for deducing near crack tip singular fields from far field stress and
pore pressure information are developed for the diffusive elastic theories of Biot: ()
methods based on a ‘pseudo’ energy—momentum tensor in the Laplace transformed
domain; as a generalization of the energy—momentum tensor of Eshelby ; (b) methods
based on a reciprocal theorem in the Laplace transform domain; (¢) methods based
on a reciprocal theorem in real time.

All of the methods relate near crack tip singular fields to far field information.

In the most difficult cases, method (a) gives coefficients of singular stress fields and
singular pore pressure gradients combined rather than separately. Nevertheless, this
method is used to show that, remarkably, the complicated shear crack tip results
derived by Craster & Atkinson can be checked in special circumstances.

2 Methods (b) and (c) require appropriate dual functions. Versions of these dual
> 'S functions are determined. Combinations of all three methods can, of course, be used
@) : in conjunction with numerical methods. All three methods are illustrated first by
= using the diffusion equation and then by using the full poroelastic equations.
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C. Atkinson and R. V. Craster

0. Nomenclature

Biot’s coefficient of effective stress, i.e. the ratio of fluid volume
to the volume change of solid allowing the fluid to drain, where
O0<axl

Skempton’s pore pressure coefficient (Skempton 1954), i.e. the
ratio of induced pore pressure to the variation of mean normal
compression under undrained conditions

generalized consolidation coefficient

Kronecker delta

dilatation

components of the strain tensor

permeability coefficient

shear modulus

measure of the change in fluid content generated in a unit reference
volume during a change of pressure with the strains kept constant
mass of fluid per unit volume

drained and undrained Poisson ratios, where v < v, < 0.5

pore pressure, i.e. the increase in fluid pressure from a reference
pressure p,

potential functions

mass flux vector

reference density

the Laplace and Fourier transform variables respectively

stress tensor and elastic stress tensor respectively, ie. oy =
tiy—ap oy

displacement vector

variation of fluid content per unit reference volume, i.e. mass of fluid
per unit volume/initial density p,

The following relations are used in the text:

o= 3(v,—v)/B(1-2v)(1+v,), (1)
Q = 2GB*(1—2v) (1+v,)*/9(v, —v) (1—2v,), (2)
a@ = 26B(1+v,)/3(1—2v,), (3)

7= (1-v)/(1-2), (
Ny = (1=v,)/(1—=2v,), (
26, = 26B(1+v,)/3(1—v,) = aQ/7,, (6)
¢ = 2kB*G(1—v) (1+v,)?/9(1—v,) (v,—V), (
7= (1=v)/2(v,—v) = Ge/k(1—,) (2G,)*. (

Forv<v, <0.5 then 7> 1.

Ty = (L=v,)/2(v,—V), 9)
Ny, = 3(1—27).

Phil. Trans. R. Soc. Lond. A (1992)
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The application of invariant integrals 233

Note the saturated, incompressible limit can be recovered by taking v, >3}, B—>1
with the results that G, -G, 77, «—>1, c—>2Gn« and @ —c0.

1. Introduction

In previous papers by Atkinson & Craster (1991 ; see Appendix 5) and Craster &
Atkinson (1992) (hereafter referred to as [AC] and [CA] respectively) solutions for
quasi-static tensile and shear fracture in linear isotropic porous elastic and
thermoelastic solids were obtained in the Laplace and Fourier transformed domain.
The specific problem addressed was a semi-infinite crack opening under an
impulsively applied load. The crack tip behaviour for an idealized loading was
considered, with more complicated loadings following by superposition. As discussed
in [CA] we are considering fracture in undamaged materials; the material ahead of
the crack tip is continuous. The pore pressure conditions ahead of the fracture are set
by symmetry. The crack faces may be either permeable or impermeable ; the pores can
be blocked by clay or the filter cake created in the hydraulic fracturing process.

The methods of [AC] and [CA] allow a fairly complete treatment of crack problems
in infinite bodies (including the finite length crack problem which is approached in
[AC] by singular perturbation theory). We now consider methods which can be used
to analyse problems with finite boundaries and which can be used with numerical
methods.

Two distinct methods are used to develop ancillary tools for extracting near crack
tip stress and pore pressure fields from far field (or other non-singular) numerical
data.

The first of these is based on a ‘pseudo’ energy—momentum tensor, which is a
generalization of the elastic energy-momentum tensor Eshelby (1951, 1970). This is
valid in the Laplace transform domain and has been developed by Atkinson &
Smelser (1982) (for thermoviscoelasticity) and by Atkinson (1991) (for poro-
elasticity). In §3a(v) this method is applied in a non-trivial way to the problem of
a shear crack in a strip.

The second method is based on using an appropriate reciprocal theorem and
constructing suitable (auxiliary) dual functions. This method is known to the authors
originally from the work of Barone & Robinson (1972) for elasticity, and has been
applied by Stern and co-workers in a series of papers for various elastic problems
(Stern et al. 1976). (See Atkinson (1983) for a review and Atkinson & Bastero (1991)
for a recent application to anisotropic elastic bimaterials.) Whereas the methods
based on the energy—momentum tensor are restricted to crack-like singularities, the
reciprocal theorem method can be extended to wedge and notch singularities (see
Atkinson (1984) for a review). For the poroelastic equations we give reciprocal
theorems in the Laplace transform and real time domains (§2b (i) and §4). The key
step is, however, the construction of appropriate dual functions and to determine
them so as to make additional calculations in the far field as simple as possible. It
should be stressed that for practical situations the method is to be used in
conjunction with a numerical method ; only in special circumstances would results be
obtainable without numerical calculations. There are numerical boundary element
(Cheng & Detournay 1988; Detournay & Cheng 1991) methods in use in the Laplace
transform domain. Our Laplace transform methods will be of use in conjunction with
those methods as well as the real time results.

Phil. Trans. R. Soc. Lond. A (1992)
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234 C. Atkinson and R. V. Craster

The linear theories of isotropic thermoelasticity and poroelasticity were introduced
and discussed in Biot (1941, 1955); in particular it is shown that in the quasi-static
limit the two theories are mathematically equivalent. The theories introduce a direct
coupling between the diffusing pore fluid (temperature) and the stress in the solid
elastic skeleton (material).

The equations of thermoelasticity are usually uncoupled due to the small coupling
parameter (Boley & Wiener 1960). This is not generally the case for poroelastic
materials and the fully coupled equations need to be solved. Hence we deal with the
fully coupled equations using the notation for the poroelastic equations as introduced
in Rice & Cleary (1976).

The stress o; is given by

0y = 2Ge;+2Gv(1—2v)71 8 64 —apdy; = ty—opdy (11)
and the pore pressure p satisfies the linear relation,

P = QE—ale,,. (12)

The governing equations, where we assume that there are no body forces or fluid
sources in the body, are as follows:
(@) the equilibrium equation,
0y, = 0; (13)

(b) Darcy’s law, which relates the mass flux to the gradient of the pore pressure,
where it is assumed that density fluctuations away from the reference density p, are
small (analogous to the Fourier law of heat conduction for thermoelastic media),

9 = —Po kD, i} (14)

(c) the mass continuity equation (analogous to the entropy balance equation for

thermoelasticity),
om/ot = —q, ,. (15)

Here m is the mass of fluid per unit volume = {p, and p, is a reference density. These
can be combined and written as

Op/0t—kQV3p = —a@) de /0t (16)

and the Navier equation from (13) as

GV*u+G(1—2v) e ;—ap , =0, (17)

or alternatively in terms of the variation of fluid content ¢,
GVu;+G(1—2v,) e ;—aQf , =0, (18)
¢V2§ = 0g/at. (19)

As noted in [CA] these equations are superficially uncoupled, the boundary
conditions are usually given in terms of stresses, displacements and the pore pressure.
The variation of fluid content is not a usual boundary condition, therefore the
equations are still coupled through the boundary conditions. The equations are
characterized by five independent constants: G,v as in an elastic material, v,,a to
characterize the interaction between solid and fluid constituents, and x which
characterizes the permeability of the material and the viscosity of the fluid.

Phil. Trans. R. Soc. Lond. A (1992)
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2. Dual functions

In the work we present for dual functions, functions which can be combined in
some way with the known solution or form of the solution in the reciprocal theorem
in such a way as to deduce some required information, we will consider only the
symmetric case, which corresponds to the tension or pressure driven fracture. A
similar approach will work in the antisymmetric shearing case. Such an analysis
would follow almost exactly that here, except that results from [CA] would be
required. The basic idea is to generate eigensolutions of the governing equations,
these are then combined with the ‘real’ solution in the reciprocal theorem. The
singular behaviour of the ‘real’ solution in the neighbourhood of the crack tip is
known from the eigenvalue analysis of [AC]; the eigensolutions are chosen so that the
coefficients of this singular behaviour can then be extracted and related to far field
integrals.

(@) The diffusion equation

As the following analysis is complex, it is valuable to illustrate the philosophy and

practical application of what is to follow with a simple example using the diffusion

equation, V2p = op/a. (20)

Now assuming that the pressure is zero for ¢ < 0 we Laplace transform equation (20)
with respect to time to get

V2p(x,y,s) = sp(x,y,s). (21)
If 7 and p’ are two independent pressure fields satisfying (21) the following reciprocal
theorem can be deduced
(]_’/]_’,]‘_p]_’:j)nj dS =0 (22)
s
for an arbitrary volume V with surface S. The notation
differentiation with respect to x;.

The philosophy is to find eigensolutions (the primed field) which are singular, i.e.
P ~ O(r %) in the neighbourhood of the crack tip and then use these together with the
far field solution of a ‘real’ problem (perhaps obtained numerically) to deduce the
near field behaviour of the ‘real’ problem.

; denotes partial

(i) Eigensolution
We now solve (21) with the following boundary conditions on y = 0

=0 for x<0 and 0p'/oy=0 for x>0. (23)
If we now Fourier transform with respect to « then (21) becomes
(d*/dy*—I*)p'(€,y,8) =0 (24)
with I'? = £2+s. For solutions which decay as y o0
D&y, 8) =A s)e (25)

and I is taken to be the root with positive real part. To proceed, we introduce the
following half-range Fourier transforms:

0 0 —/

P, = J 7(,0,8) e dz, Q= f P(@,0,9) ciga g (26)
0 — ay

Phil. Trans. R. Soc. Lond. A (1992)
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236 C. Atkinson and R. V. Craster

The subscripts +, — are used to denote functions which are analytic in the upper and
lower complex £ planes respectively. From the boundary conditions (23) and (25) it

is clear that P.=A and Q_ =-TA. (27)

Hence the following functional equation can be deduced :
Q_=—TIP,. (28)

To proceed further I'is factorlzed into a product I', I'"_ where I", = (£+ist)}, i.e. they
have branch cuts from Fis? to Fico. The functlonal equation (28) can now be split
into + and — functions to give

Q/I_=—I.P =X(), (29)

where X(£) is by analytic continuation an analytlc function everywhere in the
complex £ plane. For our eigensolutions we require that as r->0 then p’ ~ O(r™3),
which in transform space (see Appendix 1) means that P, ~ O(£7}) as |£|—c0.
Therefore by a simple application of Liouville’s theorem X'(£) can be deduced to be
a constant X. For convenience we shall take

X =—a(ni)i/s (30)

with a constant. The constant contains a 1/s term as the eigenfunctions correspond
to an impulsive situation, i.e. all the field variables are zero for ¢ < 0 after which the
forcing (in the ‘real’ problem) is applied. Hence

-x o1y
2n r,

—00

P'(@y,s) = e dg, (31)

which from the transform results in Appendix 1 gives our eigensolution 7’ as
7 (@,y,8) = (a/srt) cos (0) exp (—rs?). (32)

If the reciprocal theorem (22) is to be used then expression (32) is the required dual
function, however, we can also find the eigensolutions explicitly using 29.3.83 of
Abramowitz & Stegun (1970) (hereafter referred to as [A]) as

P (x,y,t) = (a/r%) cos (30) erfec (r/2t%) (33)
and ,
Wy _ ?erfc ( Tl) sin (30)— 4 ; sin 6 cos (39) e/, (34)
dy 272 2¢2 (mrt)e

The analysis above is identical in spirit to that which will be outlined for the
poroelastic case. However, for the diffusion equation we can solve this problem easily
for a wedge or notch.

(ii) Wedge problems
We take the Laplace transformed diffusion equation (21) with

=0 on =+, p'/oy=0 on 6=0. (35)

Since (21) is separable in cylindrical coordinates, using separation of variables and
the symmetry of the problem we find

P = 3 (A,6)K, () +Bo(s), (rsh) cos , 0, (36)

n=0
Phil. Trans. R. Soc. Lond. A (1992)
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=) c

Figure 1. The contour for notch problems.

where u, = (2n+1)7/2f and the K, (z) and I,(z) are the modified Bessel’s functions
[A]. The eigensolutions which decay as r—>oo are given by

P = A,(s) K, (rs?) cos u,6. (37)

The eigensolution which is least singular at the origin is given by ¢ =0. If f=n
we recover the solution of §2a(i), where we note from 10.2.17 of [A] that
Ki(z) = (m/2z) te?, and that the asymptotic behaviour of the modified Bessel’s
functlon K, (2) as z—0 is given by K,(z) ~ ¥y(v) (32)™"; y(v) is the gamma function
defined in Appendix 1.

(iii) Near field evaluation

For the real solution where the crack or wedge is pressure free, it is clear from an
eigenvalue analysis of the diffusion equation that as » -0, V*p ~ 0. Hence to leading
order in the neighbourhood of the crack or wedge tip

P~ % C,(s)r* cos u, 0. (38)
n=0

It is the intensity factors C,(s) that we wish to evaluate.

Consider the wedge in figure 1, and let C be the contour of radius R along which
some pressure loading is applied, ¢, be the contour of radius € enclosing the crack tip
and [,, [, be the contours along the wedge faces. Then substituting p’, o from (37), (38)
in the reciprocal theorem (22)

,0p  _Op _ 0P (")
Ls(p o P ar)rdﬁ— fc(p % Py )rd@ (39)

Note that the integrals are zero along the wedge faces as p* = = 0 there. Taking the
limit as €0 in the first integral, and using the orthogonality of the eigensolutions
and asymptotic solutions gives

_ (%s%)l‘n 4 . 0D _dK "(/r,g%)
0n<s>———fﬁr(1{ oo L p s )

cos (u, 6)dé. (40)

r=R

Bleny(pen) J -

The recurrence relations for the derivatives of modified Bessel’s functions are given
in Appendix 1.

Phil. Trans. R. Soc. Lond. A (1992)
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238 C. Atkinson and R. V. Craster

It is anticipated that the ‘real’ solution P is evaluated using some numerical
scheme of finite elements or boundary elements whose accuracy near the crack tip is
not clear. However, the numerical data should be more accurate in the far field, and
it is this data which is then substituted into (40) to deduce the correct near field
behaviour. The numerical evaluation of the stress intensity factors is a difficult and
delicate process and it is envisaged that the extension of this simple example will be
useful though it is not pursued here.

This example illustrates the general procedure; note that all the above has been
performed in Laplace transform space. We now proceed to consider the more
complex problem of poroelastic fracture using a similar approach.

(b) Poroelastic fracture

For poroelastic tensile fracture we consider the case of a stress free crack in a
porous elastic material. The material is in equilibrium at ¢ = 0 when some stress
and/or pressure field is applied in the far field. The crack is on y = 0, x < 0 and the
applied loadings are assumed symmetric; for more general cases with shear loadings
the eigenfunctions from the shear situation [CA] are needed.

If the material is continuous ahead of the crack tip we have two possible cases.
Firstly the crack faces (y =0, x <0) may be permeable 7 =0 or they may be
impermeable 0p/0y = 0. From the symmetry of the tensile problem, the condition on
the x-axis ahead of the crack will be that 0p/0y = 0 for > 0. The situation with
mixed pore pressure conditions is more complex, therefore it is the case we treat in
detail here; the method will also work for the unmixed boundary conditions, i.e.
impermeable crack faces 0p/0y = 0 for all x.

(i) Reciprocal theorem

In Laplace transform space a reciprocal theorem can be deduced for linear
poroelasticity (Cleary 1977). If we assume that the primed and unprimed variables
are two independent poroelastic states, there are no body forces or sources and that
there is no pre-existing pressure or stress field, then the reciprocal theorem is

—_ — — K — —/ —
J ((O'ij“z“a'z'j ui)‘*‘g(Pp,j_p P,j))”j dS =0 (41)
K

for an arbitrary volume V with surface S. The overbar denotes Laplace transformed
quantities.

(ii) Higensolutions

To deduce the eigensolutions we follow the procedure introduced in §2a (i). In the
mixed case the ‘real’ solutions will, in general, near the crack tip have a singular
stress field characterized by a stress intensity factor K, () and a singular pore pressure
gradient characterized by K, (). It is our object to identify these in terms of integrals
which can then be evaluated.

As in [AC] the governing equations and the variables of interest can be written in
terms of the Biot potentials (Biot 1956). The details are given in [AC] and the explicit
form of the displacements, stresses and pressure field are given in Appendix 3. The
equations for the potentials can now be written as

V2P =0, Vi =0oVid/dt (42)
Phil. Trans. R. Soc. Lond. A (1992)
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and hence when these equations are Laplace transformed
V2¥ =0, VD = (s/c)V2D. (43)
We introduce the following scaling:
X =u(s/c)t and Y = y(s/c),

e

(
oiy(,y,8) = TyX,Y,8) (s/0}, Ew,y.5) = VX, Y,5) (s/c), (
w;(x, y, )— U(X,Y,s) and p(x,y,s)=PX,Y,s ) (s/c)t, (46
(

&'(X,Y,s) = B(x,y,) (s/c) and SF’(X,Y,S) Pla,y,s) (s/c).

This scales s out of the Laplace transformed equations. The resulting equations from
(18), (19) are:

V%, O+ G(1—2v,) B ,—aQV , = 0, (48)
Ve, V=", (49)
and Vi, P =0, Vi, & =V%i, &', (50)

where V%, = 0?/0X*+0?/0Y*? and , denotes differentiation with respect to X;. Now,
taking the Fourier transform with respect to X, i.e.

D", Y,s () J J+w (x,y,t) etX~stdX dt (51)

gives from (50) the equations,
(d?/dY?—TI?) (d2/dY2—£23) D7 (£,Y,s) = 0, (52)
(d2/dY?— £ P7(£,Y,s) =0, ' (63)

where I'? = £24 1. Considering the upper half-plane and assuming that the stresses
tend to zero as ¥ —o0 implies that:

D, Y,5) = A, s)e Y + 4, 5)e Y, (54)
PI(E,Y,5) = By(§, 5) e, (55)
|| = £ £ with both square roots real and positive for £ real and positive and g%i
having branch cuts in the complex § plane from 0 to Fico respectively.
In [AC] the following problem was solved.
A semi-infinite crack on y = 0, x < 0 has the following boundary conditions on
=0:
y=5 o,y = 0V, (56)

o, =—T,0**H({#) when 2z <0, 57
vy 0

where H(t) is the Heaviside step function. This corresponds to an impulsively loaded
crack under an internal stress. The form of the loading is somewhat artificial, but it
can be used to generate more general loadings by superposition. We also assume

p=0 when x2<0, (58)
i.e. a crack with permeable crack faces. From the symmetry we require that
u,=0 and Op/0y =0 when x>0. (59)

A modification to the solution of this problem gives us the eigensolutions required.
We take half-range transforms as in the example of [AC] and then modify the

Phil. Trans. R. Soc. Lond. A (1992)
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240 C. Atkinson and R. V. Craster

solution of the resulting functional equations to pick out the eigefisolutions. Since we
follow the analysis of [AC], taking 7, = O there. Only the outline of the solution is
given here.
We define 7, and P, to be the half-range Fourier transforms of 7, and P, on
Y = 0,X > 0, respectively
+o0 . +od )
T, = f Tyy(X,0,s)e¥XdX, P, = f P(X,0,s)e¥X dX (60)
0 0
and define U,R_ to be the half-range transforms of U,,dP/dY on Y =0,X <0
respectively,
° oP

0
U = f U,X,0,8)e¥XdX, R_= J a—j;(X,O,s) eltX dX. (61)

Here the subscripts +, — denote functions which are regular in the upper and lower
complex £ planes respectively.

Using the potential representations in Appendix 3 it is possible to combine the
half-range transforms in such a way as to form a functional equation in terms of
+, — functions. Following [AC] let

M, =T +3P,/2B(1+v,), L_.=R_+2G,8U, (62)
o (63)
the potentials give
A, || +4, T =0, (64)
P, =2Qaf? By + (c/x) 4,, (65)
R_ = —2Qaf?|£| By— (c/x) T4, (66)
T, = 2G(—£B,/(1-2v,)+ (G, /() A& —E| I), (67)
U = 29, |€| B,. (68)

The following equation can be deduced
M, = (—2G,k/c)L_N/TI. (69)

To separate this into +, — functions, N(£) and I" need to be split into products of
functions analytic in the upper and lower complex £ planes. Following our simple
example earlier, it is clear that I can be factorized into a product I', I"_ where
ry,= (E+1i)3, i.e. they have branch cuts from Fito Fico. The product split for N(§) is
performed in Appendix 1 of [AC] and relevant results are reproduced in Appendix 2
here. From (69)

I''M /N, = —2GQ,kL_N_/cI'_ = X(§). (70)

Hence it can be shown that
A,=2/2G,N_T,. (71)

By using the definitions (62), (63), Z(§) can be extended by analytic continuation
as an analytic function in the whole complex £ plane.

For the following analysis we can deduce two eigensolutions, one of which is too
singular for a physical problem in both the stress and pore pressure field. From the
reciprocal theorem we can then deduce a relationship between K,, K, (the mode 1
stress intensity factor and the coefficient of the (singular) pore pressure gradient ; see
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Appendix 4) and a far field integral by using one eigensolution. By using the other
eigensolution, which is just singular enough in the pore pressure to act as a dual
function for the pore pressure itself, then gives K, related to the far field. To generate
the first-order eigensolutions we set X' = a4 b£. (Note that we could pick out higher-
order eigensolutions by letting X = c£>+d&3... and choosing the appropriate edge
conditions for the pore pressure.) Defining

k(£) = 1/N_(§) T (£)&: (72)

This function is split into a sum of + and — functions in Appendix 2 of [AC]; some
useful results are quoted in Appendix 2 here. Hence we can deduce directly from [AC]
or from (71), (68), (65) that

P ki) 2E) _on g g 4 k-0)2(E)

g 20,« 26, ) (73)

Here by analytic continuation J;(£) is regular in the whole complex £ plane. Taking
the limit as || -o00 and using the asymptotic properties of N, N_, k,, k_ as given in
Appendix 2, together with the appropriate edge conditions, gives J;. From [AC] or
(71), (67), (66) the following secondary equation can also be deduced:

T & —N, & Z(E)/T, +7Z(E) &k, —c,)
=3R_/2B(1+v,) & —7Z(E) (E(k_+co)—T_/N_£) = J(£), (74)

where J,(£) is by analytic continuation an analytic function in the whole complex §
plane. It is determined in a similar manner to JJ,.

(iii) Feirst eigensolution

The first eigensolution is chosen to be singular in both the stress and pore pressure
gradient so tlslat the eigensolllltions have edge conditions &, ~ O(r3), @y, ~ O(r¥),
0p’ /oy ~ O(r™%) and P’ ~ O(r™?) as r—0. In transform space (see Appendix 1) this
implies that as |£] >0, T% ~ O(£L), U’ ~ O(£7}), P, ~ O(£53) and R”. ~ O(£L). To get
this eigensolution we take a = 0.

Near field. As |f|->o0 we have from the edge conditions M, ~ 7" using the
asymptotic behaviour of I', = (£+i)i—> gﬁ and N, -1 (Appendix 2), we can deduce
immediately from (70) that

T, ~ bt (75)
A simple application of Liouville’s theorem in (73) gives,
(€)= (—be/2G, k) (co €+ (N.(0)/T—d)) (76)
and therefore )
Py~ (—cb/2G, k%) (iN.(0)/ 27+ @), (77)
, —bd—=v),1 b 1 (N+(O) 1 i)) 3
v~ e e (o (g g e

Using the above result for U_ we can deduce from (70)
R’ ~ (be/2G, &) (@ +iN ,(0)/27) £k (79)

Hence using Liouville’s theorem in (74) J,(§) = —7b&(d—N,(0)/7). (The relevant
results from [AC] are reproduced in Appendix 2.)
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The asymptotic results invert, using the scalings and the results in Appendix 1 to
give, on the x-axis,

[ —cb\[iN,(0) s\ 1
D (ZGu K)( o +w) (c) (nix)i for x>0, (80)
@y~ —(b(1—v)it /@) (c/s)i(—x)F for x <0, (81)
@, ~ —b(ii/2nd) (c/s)iz? for x>0, (82)
op’  —be (iN,(0) s\i 1 s
% 2Gu/<< 27 +w p 2(ni)i( x)F for x<O. (83)
Taking the singular pore pressure field for a crack (Appendix 4),
P ~ Kj(s) (2mr)"E cos 16, (84)
we deduce that
o (SN (N0), (YL
7~ (o) (5540 g oo )

For the stresses and displacements take f =, A = } in Appendix 4 and K, (s) there
to be K;(s) (the prime being used to denote the first eigensolution) which is deduced

to be .1 1 1
Ki(s) = biz. 272 (¢/s)1. (86)

The stresses and displacements are then given by (272)—(276).

Far field. We also require the behaviour of the far fields of the eigensolutions for
use in the reciprocal theorem. These are deduced by matching the solutions from
(73), (74) with an outer solution.

To deduce the asymptotic behaviour in the far field we note that from the Laplace

transform of (16) KQV2 P = (2 Qe +7). (87)
In the far field P ~—aQe. (88)

Thus to leading order, {, the Laplace transformed variation of fluid content, is
effectively zero out in the far field and hence

GV, + G(1—2v,) &, ~ 0, (89)

i.e. to leading order we have the usual elastic solution (with undrained coefficients).
The displacements must remain finite as 7 ->00 ; hence we expect that @, ~ O(r %) at
most. The eigensolutions in the far field are therefore given by matching with the
inverted transform fields as

P~ 2(CB(1+v,)/34/(2nr®%)) cos 26 (90)

and the elastic eigensolution (with undrained -coefficients) is deduced from
Appendix 4, taking § =m, A =3 and K,(s) there is given by GC.
C can be deduced as

C = 321k (N, (0)/7—d) (s/c) 5. (91)

Application of the reciprocal theorem. We consider the contour of figure 2, and apply
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. The contour for crack problems.

the reciprocal theorem with the primed field as the above eigensolution, and the
unprimed field as the ‘real’ solution. As the crack is assumed to be permeable and
stress free, the integrals along the crack faces are zero. The crack tip integral can be
evaluated using the asymptotic results for the crack tip fields deduced in
Appendix 4, the near field results, and the far field integral with the far field solution.
Hence

2(1—v)
@

’ K 4 T — —/ —/ K ——/ — —
K,(s) K} +%K2(3)K2 = ‘f (T W — Ty ;) +g (pp,,—D D) rl,-r d6. (92)

This gives a relation between K, and K, for the ‘real’ solution in terms of an integral
which can be evaluated.

(iv) Second etgensolution

This eigensolution is chosen to be one which is singular in the pore pressure, but
has the usual stress singularity. Hence we take the edge conditions as r—0 to be
that &, ~ O(rY), @y ~ O(rt), p” ~ O(r%) and 3p”/dy ~ O(r™%); so as || >0, T%,
Pl ~ O(&}), U’ ~ O, R” ~ O(£). The double prime has been added here to
prevent any confusion with the previous eigensolution. We take X(§) above to be
constant (i.e. b = 0) and hence from the secondary Wiener-Hopf equations (73), (76)
we can deduce the asymptotic behaviour of the variables of interest.

Near field. In the limit as |£| >o00 we apply Liouville’s theorem to (73) to deduce

K(E) = —ccya/26, & (93)

and hence P’ ~ (ca/2G, k) (N, (0)/7—d) £, (94)
From the definition of M, and from (70) we can deduce

T} ~ a(l =7 (N,(0)/7—d)) &+ (95)

and hence from (76) that J,(§) = 0. The near crack tip behaviour of the pore pressure
is given from Appendix 4 as

P~ ae (N+_(O)—d) (‘?/034 7~ cos 10 = LY ; cos 6. ‘ (96)
26, x\ 7 (im)} ()t

(As the near crack tip stress field for this eigensolution is O(™#) its contribution to the

near field integral in the reciprocal theorem will be zero.)

DO
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ji‘igure 3. A finite region.

Far field. The far field solutions are deduced in a similar manner to those of the ﬁrst
eigensolution. As the displacements must remain finite as r—-oc0. Hence @” ~ O(r~ 1),
The eigensolutions in the far field are therefore given by matching with the inverted
transform fields as

7"~ 2(CB(1+v,)/3+/(21r?) cos (30), (97)
wy = XC/+/ (27r)) (— (5—8v,) sin (30) + 3 sin 1), (98)
a, ~YC/+/(2nr)) ((7—8v,) cos (30) — 3 cos 30), (99)
Ty ~ —1GC/+/ (2mr®)) (cos (30)+ 3 cos 30), (100)
Frg ~ —HBGC/+/ (2mr?)) (sin (36) + sin 20), (101)
7y ~ —HGC/+/ (2mr3)) (T cos 30 — 3 cos 10). (102)
Here C is given by ; )
C = ic,a(21)37 (s/c)73, (103)

i.e. the elastic eigensolution (with undrained coefficients) in Appendix 4 with § =,
A =} and taking K,(s) there to be equal to GC.

Application of the reciprocal theorem. We take the surface S to be the contour of
figure 2. The integrals along the crack faces are zero as the pore pressure in both the
‘real’ and eigensolution are zero; similarly the crack is stress free for both solutions.
Therefore

K 4 K —_—/ —f —
E;Kz(s)K2 =_f ((O'W i o'irui) g(pp,r—l’ p,r))r‘r=Rd0' (104’)

This gives K,(s) as an integral which can be evaluated.

(¢) Numerical methods

Although we have worked through the theory for a particular, rather specialized
case, we can apply the same method for other cases. For instance, the notch of
figure 3. In this case we need the primed field which is in transform space and the
transforms need to be inverted. This inversion cannot be done analytically and must
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be done numerically. This can be achieved in an accurate and rapid manner by
utilizing the fast Fourier transform (Brigham 1973). Let

1 + 00

f@) =5 | F@ede (105)

If F(£) tends to zero as |§| >co (which it must if the integral is well defined), we can
approximate f(z) by

1 "2 n_(nn .
flx) = %ngw TF(—Z—) exp (—inmx/l). (106)
Replacing « by mAx = 2lm/N and truncating the sum gives
1 NEL
fmAz) =— 3 F( ) exp (—2mninm/N). (107)
2T, N \ L)1
Changing the summation range gives
1 N-1
f(Az(m' —iN)) = — ¥ (—1)»*™ F’( (' —3iN) ] exp (—2min'm’/N), (108)
NAz .~

which is exactly the formulation for the inverse fast Fourier transform routines. Here
21 is the length of the interval (ca. 50) and N is the number of intervals (ca. 1000). A
useful check is to invert e 7¢/I",, which is inverted exactly in Appendix 1, (203). The
inversion was done using double precision complex arlthmetlc and NAG routine
CO6EAF. For small values of y the exact solution is 0( r i) asr—0;asa consequence
the numerical result contains some oscillatory ‘noise’ in this region and this can be
filtered out. Note when using complex arithmetic with functions containing branch
cuts, it is important to check which branches the machine takes. The numerical
analysis is in the Laplace transform domain and it is important to remember the
scaling introduced earlier.

(d) Separation of variables

An alternative approach for generating auxiliary solutions is to note that the
Laplace transformed equations (43) are separable in cylindrical polars. From the
symmetry of the tensile problems we drop the sin A6 terms and terms in 6, In ». To
get the following series solutions

Y(r,0,s) = X cos x,0(4, rn+ A, rxn), (109)
n=0
&(r,0,s) = X —(c/s) cos w, O(C, r*n+C, r~on)
n=0

(r(s/c))+ B, I, (r(s/c)?)) cos u, 0, (110)

"ﬂn

where the u,,0,,x, are eigenvalues determlned from the boundary conditions and
K,(2),1,(2) are the modified Bessel’s functions [A]. Using the equations in
Appendix 3 this gives the following two cases.

The impermeable crack where

/oy =0, on 6=0,m, (111)
Phil. Trans. R. Soc. Lond. A (1992)
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246 C. Atkinson and R. V. Craster
by taking w,=mn, p,=n and y, =32n+1). This satisfies all the boundary
conditions except for 7,,,5,, =0 on 6 = .
The permeable crack where
p=0 on O=m 0Op/dy=0 on 6=0 (112)

by taking w, =32n+1),u, =32n+1), x, = 3(2n+1). This choice satisfies all the
boundary conditions except for 7,, =0 on 6 = x.

These solutions satisfy the poroelastic equations and hence they can be used as
auxiliary functions in the reciprocal theorem. However, they do not satisfy the
boundary conditions exactly, so that there is a price to be paid for the simpler
structure of these eigensolutions. When they are substituted into the reciprocal
theorem, the integral along the crack faces is no longer zero, and this integration now
has to be performed.

(i) Wedge problems

If we are prepared to perform the integration along the crack faces we can also
consider the following auxiliary function.

V=0, (113)

s\E\  y(m/2B8)r ™\ ¢
(p A cos (213)( n/zﬂ(T(E))—W>—BEM+I COS (A+1)0, (114)

where A is a zero of sin 248+ A sin(2/4), which gives

P = (s/K) AK )y, (r(s/c)?) cos (m6/2), (115)
i.e. the solution to the diffusion equation we considered earlier. Let
F(r) = (Kpoplr(s/e)) —y(m /2B [2(3(s/c)2)"'*), (116)
then
G, n6\dF Bc
ur—ﬁ(A cos (2,3) 4 A+ cos (/\+1)0), (117)
a;=%<—"f;§: ) gin (gg)+Bc P(A+1) sin (/\+1)0), (118)
O\/1d 1 2 B
- —2Gu(A cos (%f)(?a;"(;ﬂ) )F( r)+ C)\(A+1) A1 gos (A+1)0), (119)
To = —2G (A cos (gZ)(l d i)F(r)—j%()\+1)2 cos (A+1)t97"""1>, (120)
&= 2Gu(_2;1f sin (’2‘—2) dﬁ;’”) +%(A+ 12721 sin (A +1) 0). (121)

This is clearly not an ideal eigensolution, as on the wedge faces 7, and &y, are both
non-zero. (For a crack (# = m) then only &, is non-zero.)

(it) The reciprocal theorem for the crack
If § = n then the situation is somewhat simplified; in particular we know that
Ky(z) = (n/22)ie~* (122)
Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

A

P

L
/[ \ \\

A

a
L\
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The application of invariant integrals 247
and that A = —1 in the above. As r >0 we note that
F(r) (r(s/c)?)— (m/2r(s/c)}) ~ — (Lnr(s/c)s). (123)

Therefore using the reclprocal theorem

K ’ —
_J“ ((O—ir Uy Uir z) g(ﬁ_,r_pp,r))rde

K (s)@2n)}a L (s\t B _ [
=—1—————(8);;) “(A(%ﬂ)i(g) +—8£)+%K2(8)A1t<§) _QJ Trogp—rdz  (124)

0

as 7,, and u, are both antisymmetric. Setting 4 = 0, we can deduce K,(s) and then
taking arbitrary values for 4, B find K,(s).

3. Invariant integral for poroelasticity

If all the field variables are assumed zero for ¢t < 0 then we Laplace transform the
governing equations (13), (16) to get

7,5 =0, (125)
kQV:p = s(aQe+p), (126)

as in Atkinson (1991). Consider the lagrangian L
L = —{t,;e;+apu, ;+(k/25) P, D ;+D*/2Q. (127)

We recall ¢, is defined to be the elastic part of the stress tensor. The Euler-Lagrange
equations are equivalent to (125), (126), i.e

0/0x; (OL/0w; ;) — 0L /0w, = 0~ ; = 0, (128)
0/0x; (0L /0p ;) —OL/0p = 0 — kQp ;; = s(aQi; ;+ P). (129)
In Atkinson (1991) the pseudo energy—momentum tensor is defined as
P, = OL/ow, ,u, ,+0L/0p ,;p,—Ld, (130)
giving from (127) that
P, =—a,u, ,+(k/s)p,;p,—Ld,. (131)

As L does not depend explicitly upon x,,P; ; = 0 and hence the integrals

F = f P;n;dS for 1=1,2,3 (132)
are zero when S is a closed surface enclosing no singularities.

These equations are analogous to the usual formulation for elasticity ; however, the
equations are all in the transform domain so have no direct physical significance.

(a) The application of the invariant integral

In the Laplace transform domain the tensor P; can be used with the poroelastic
equations in much the same way as in thermoviscoelasticity (Atkinson & Smelser
1982). However, as described there, the simplest invariant F, leads in the most
difficult cases to a result for the near field which involves a combination (as the sum
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of the squares) of the stress intensity factor and the coefficient of the singular pore
pressure (temperature) gradient term at the crack tip. Such formulae could be used
together with the dual function approach to get explicit results. There are also non-
trivial cases where the P; method itself will lead to the explicit determination of near
field behaviour. We shall illustrate the method firstly with the diffusion equation,
and then with the transient shear problem as considered in [CA].

(i) The diffusion equation
In a similar manner to that above we can deduce for the diffusion equation that

P, is given by -
Py=81p;P,—0,;(3' PP +3P") (133)

We now consider the antisymmetric (loaded) analogue of §2a(i): the problem of a
semi-infinite cut where on y =0

p=0 for x>0 and 0p/dy=—gq,e”* for x<O. (134)
Assuming that the pressure decays as y —oo then if we consider just the upper half-

plane p(E.y,8) = A(g s)e”"V. (135)

To proceed we introduce the following half-range Fourier transforms
00 A\ am 0
Q+ = J ap(xa,yo, 8) eigz dx’ P’_ - J‘ p(w7 07 8) eigx dx (136)
0 —00

The subscripts +, — are used to denote functions which are analytic in the upper and
lower complex £ planes respectively. From the boundary conditions it is clear that

P =4, Q,—qya/s(1+ifa)=—TA. (137)
Hence noting the simple pole at i/a the following functional equation can be deduced
o= o ) Ty U
giving as || >0, i.e. at the tip of the cut (as x~0—,y = 0)
P_~ (g,/isT,(i/a)) &2, (139)
From the diffusion equation we know that in the neighbourhood of the tip (as » —0)
P~ K,(s) (r/2m) sin 6. (140)
Hence we can deduce K,(s) as
Ry(s) = q,142+/2/sT,(i/a) (141)
and as @ >00, i.e. a uniform load, this remains finite and
Ky(s) > q24/2/8%. (142)

(i) The finite width strip
We now consider the problem of a finite width strip (figure 4). As well as giving

simple direct results, we can use this solution to check the above result, using P,;, and
taking the limit as the width of the strip tends to infinity. We assume antisymmetric
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=0
B 5 c’

Figure 4. The contour for use with the invariant integral.

loadings about y =0 and consider only the upper half of the strip. Take as a
boundary condition that

D =p.fs) on y=h, (143)
=0 on y=0,2>0,0p/0y=0 on y=02<0, (144)

then as ¥ — =+ oo, the solutions there are given by
d?p/dy*+sp = 0. (145)
The resulting solution which satisfies the boundary conditions as x ~0, i.e. on CD is
P = p, f(s) sinh ( (sty)/sinh (st h) (146)

and as x->—0o0 on AB )

D = P, f(s) cosh (sty)/cosh (sth). (147)

Now using the contour ABOCD and the property that the integral

15 "%

J Pon,dS =0 (148)

since it does not enclose any singularities, we can deduce that
K2(s) = 16p2f(s)? st/sinh (2t ). (149)

(iii) Comparison with infinite problem
For the semi-infinite crack in the strip with a uniform loading, the boundary
conditions on y = 0 are that

=0 on x>0 and 0p/dy=—gq,/s for x<0, (150)

also p=0ony=+h.
We subtract off the solution of the strip without the cut (i.e. the solution as x -0
(146)) from the problem considered in §3a (ii), the tip field will be unaltered. We find

that 0p/dy = —p, f(s) st cosh (sty)/sinh (sth) (151)

as ¥ >—o0. Hence, by comparison, with (150)

qo/s = 5 pof(s)/sinh (sth). (152)

Therefore taking the limit as #—co, i.e. the infinite body, in (149) and substituting
for p,f(s) from (152) the result (142) is duplicated. It is also worthwhile noting here
that a similar approach can be used for bimaterial strip problems.

Phil. Trams. R. Soc. Lond. A (1992)
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(iv) The poroelastic equations

Consider the semi-infinite crack transient shear problem of [CA] and suppose that
instead of the shear stress loading considered there, there is now a boundary
condition on the pore pressure gradient; i.e. on y =0

0,y =0, Op/dy=—q,e**H(t) for x<0 (153)
and that ahead of the crack due to the anti-symmetry
p=0, u, =0 for x>0, (154)
and finally that on y =0, o, = 0. The solution follows that of [CA] closely and is
only sketched very briefly here The shear potentials from Appendlx 3 are used, and
the same Laplace transform method and scalings as in §2b(ii). The half range
transforms of 7y, and dP/dY are 7, and R, respectively, on ¥ = O, X >0,i.e.

+00 +toap
Ty = J TXY(X’Oys) eigX dX, R+ = J aP(X,O,S) eingX (155)

0 o Y
and U_, P_ are the half-range transforms of U,,P on Y =0, X <0, i.e.

0 0
U= f U,(X,0,s)e¥dX, P = J P(X,0,s) e X dX. (156)
The subscripts +, — denote functions which are regular in the upper and lower
complex £ planes.
The boundary conditions can be written as

Tyy =0, PJOY = —qya,c/s*(1+ifa,)+R,, (157)

Tyy=0,0,=U_P=P._all on y=0. Using the formulae in Appendix 3 and the
boundary conditions above gives a system of equations which relate 4,, 4, and B,
to the physical quantities on the X-axis. These are treated in [CA]. The main result
is that the mode 2 stress intensity factor is given by

Z (s) < —3¢y0v/2 ( 1 ik, (i/a,) )(s)
B S @ N O o 2B v 7\ N0 TG/ e) - 4

The interesting result is that with this purely pore pressure gradient loaded fracture,
we can take the limit as @ -0, i.e. uniformly loaded along the entire crack. The stress
intensity factor is finite

- 2tic3q, K
Kuil) = 3@ 17N 0)) 2B( 1+V ( ) (159)

We can also deduce the pore pressure gradient coefficient K,(s) in this limit as
i —2ig,v/2 1 S\t
K.(8) = — e R = K, ( -1 . (160
0 = T Yo ( ) o) - o

(v) A crack in a finite width strip

We now consider the problem of a finite width strip with pressure conditions
imposed on the sides y = + 4. Again direct results can be obtained using the invariant
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integral (132) and we can check the above results using P, (131) after taking the limit
as the width of the strip tends to infinity. Taking the boundary conditions to be

U, =u,=0 and p==p,fls) on y==h, (161)
p=0 on y=0,>0, 0p/oy=0 on y=0,2<0, (162)
=0 on y=0,x>0, 7,,=0 on y=0,2<0, (163)
0, =0 on y=0, (164)
then as x -+ oo the solutions there are given by
k@Qd2p/dy®—a@se—sp =0, (165)
Tia,0 = 0, (166)

which implies that #; = 0 as x >+ c0. The above equations can be solved using the
boundary conditions (161)—(164) to give, as o0 along CD.

P = p,f(s) sinh ((s/¢)*y)/sinh ((s/c)h), (167)

_ ocpof (1—2vp)
® 7 26G(s/c) (1—v) sinh ((s/c)th

and, as x—— o0 along 4B,

cosh (s/c)iy)—cosh ((s/c)th)),  (168)

D = pof(s) cosh ((s/c)ty)/cosh ((s/c)th)), (169)
=3 apf(s) (1= 27) 7 (sinh (s/c)ty)—sinh ((s/c)ih)).  (170)
G(s/c)i (1—v) cosh ((s/c)7h)

Using the expression for P;; (131), the asymptotic results as r -0 (140), and that part
of F, has the same form as the elastic energy release rate (with drained coefficients)
in the neighbourhood of the crack, integrating around the contour in figure 4 gives

ng(S)_K%I(S)(I_V) PoKf(8)
s 16 4G ¢(s/c)t sinh (2(s/c)th (17

To connect with the solution in (159) and (160) we first need to subtract off the
solution of the strip without the crack. This is the field as #—o00, i.e. the only non-
zero pressure and displacement are p and #, as given in (167), (168) above. As a
consequence the field at the crack tip should be the same as that of a strip with
» = 0 on its sides, but with 0p/0y = —¢q,/s on the crack y = 0, x < 0 where

qo/s = (5/0),f(s)/sinh ((s/c) h). (172)
It is now possible to let A —>oo in the full strip solution to give the result

«Ki(s) EhL(e)(1—v) _ _ qix
s 16 4G —283(s/c)t

(173)

which must correspond to the problem of §3a(iv). We can now check results (159),
(160) numerically. The material constants, etc., drop out of the above equation
leaving us to show that

7 . L\ (4. LV (R0
(M(O) <J+1/N_<0>>) (lK © ’(X+2N< >)+(d+N_<O>)> 77((7+1/1V_(0)) =L
(174)
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252 i C. Atkinson and R. V. Craster

The integrals were evaluated by using NAG routines DO1AJF, DO1AKF (NAG 1991)
and (174) was verified for several values of v, v,,, providing a useful independent check
on the results in [CA].

As an aside we note that one of the current theories in earthquake mechanics as
discussed in Stark & Stark (1991) is that large pore pressure gradients caused by
rising pore fluid pressure provide a mechanism for brittle failure. The problem
considered in §3a(v) is an impermeable stress free crack in a poroelastic strip. The
boundary conditions on the edges of the strip (y = + &) are that the displacements are
fixed, and that there is an impulsively applied pore pressure at the edges which is of
opposite sign on y = + A respectively. Physically this would correspond to a stress
free fault in a layer of porous material between two rigid substrates. If the upper
substrate was a reservoir of fluid and the lower substrate behaved as a sink, we would
have the boundary conditions of §3a(v). Using the argument following (171) we can
deduce that if the width of this layer then tends to infinity the Laplace transformed
shear stress intensity factor is given by (159). In real time K, (¢) ~ i, if the pore
pressure gradient is applied for sufficiently long the failure criterion will be exceeded.
Hence, the scenario discussed above provides a mechanism for shear faulting, the
rapid redistribution of fluid which is often observed following earthquakes is then a
result of the fracture propagation. This could be modelled using the methods of [CA],
this redistribution of fluid would then trigger the smaller aftershocks which often
follow the main earthquake.

The invariant integral can also be used in a very similar manner to verify the
results in [AC], consider a pore pressure loaded crack in a finite width strip and follow
the method above. In [CA] the invariant integral is used together with the matching
ideas of [AC] to verify the small time results obtained for the intensity factors in
[CA].

4. Auxiliary functions and the real time reciprocal theorem

In previous sections we have considered a ‘dual function’ approach to enable near
wedge (or crack) tip singular behaviour to be deduced in the Laplace transform
domain from far field numerical information. Such solutions are directly useful when
numerical or other approximate analysis has been completed in the Laplace
transform domain. There are such analyses available (Booker 1973; Cheng &
Detournay 1988), so the results of the previous sections should be useful. It is also
worth stressing that the results of §2b have the property that only the far field
information is necessary. The functions as introduced in §2d require both far field
and boundary information to calculate the near tip singular fields, but as a
consequence are much simpler to implement. In the representation we have been
prépared to pay the price of near tip boundary evaluations in the interest of simpler
dual functions, and to extend the range of problems from cracks to notches. Hence
it is natural to enquire whether a real time formulation is possible, given that some
relaxation of the constraints required of the dual functions (e.g. satisfaction of all
boundary conditions) is allowed. There are also some numerical methods which are
in real time (Zienkiewicz 1984 ; Dargush & Banerjee 1991)) so this analysis should be
of value there.

Once again we will illustrate the method using the diffusion equation and then
apply a similar procedure to the full poroelastic equations.
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(@) The diffusion equation

Consider the region as shown in figure 1 with boundary C, area £ and the thermal
diffusion equation

KV2T = 3T/, (175)

where « = k/pc, k is the thermal conductivity, p the density and c¢ the specific heat
of the solid and the following boundary conditions:

T =0 on the wedge faces, (176)
aT+b0T/on = f(r,0,) on C. (177)

Here the loading at infinity or remote loading on the outer (finite) boundary is for
convenience and assumed to be symmetric about ¢ = 0.

T=0 at t=0. (178)
Multiplying by a function 7* we can deduce that

JJ(WT*+——) ~(KV2T—9’C)T*det
oJo o
J TT* Q=+ f f (T————T*gm)d()’dt (179)

In general to deduce the appropriate dual functions we would need to evaluate

kV2T*+0T*/0t = 0 (180)
subject to T* = 0 on the wedge faces, (181)
T*=0 at t=0. (182)

If this has been done the result is

J TT* dQ|i= + f f (T——~T* T)d(]dt (183)
Q

As T'=0 at t = 0 we can consider a solution 7™ which is time independent, i.e.
T* = ™% cos (n6/20). (184)
From §2a(iii) we have for the full solution as r—0 that

T ~ K,(t)r™/? cos (m6/2p). (185)

Hence we can deduce

nfTKZ(t)dt =J Tr—1% cos (n6/20) dQI"’+J j (T———T*gT)dOdt (186)
0

(b) The poroelastic equation
Consider the same region as before, figure 1, and the governing equations in the

form
kQV?p = aQ) 0e/0t + Op/ 08, (187)
0y, =0. (188)
Phil. Trans. R. Soc. Lond. A (1992)
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254 C. Atkinson and R. V. Craster

The following boundary conditions are assumed
p=0, 0,,=0,04=0 on the wedge faces, (189)
ap+bop/on = f(r,0,t),0,,, 0, specified on C, (190)

and for convenience the remote loadings are assumed to be symmetric. Initially we
assume zero remote pressure and stress fields

p=0, 0;,=0 at t=0 (191)
and we use the assumed symmetry to set
op/dy =0, u,=0, 0,=0 on 6=0. (192)

Various ‘pseudo’ reciprocal theorems can be written down. Using functions p” and
o;; we can deduce that

f f (0w, ;— 0y u; ;)AL de =J J a(p’'e—pe)dRdt = f J (03w — oy ui) mydC de
oJo ’ oJo oJe

(193)
’ Op de Op
2 _ 20 0O — L)
LL}(QKV ocQ +at) (QKVp Q7 at)p dedt
P ,0e  0¢
p———p n;dCdt + pp |0dQ+ ocQ PPy dQdt.
(194)
There are both satisfied if the primed functions satisfy
0,.;=0, oy=t;—ap, (195)
QkV2p' —aQ) e’ /Ot +0p’ /Ot = 0. (196)

As the material is in equilibrium at ¢t =0 we take the dual fields to be time
independent. We take the dual solution in (193) to be the purely elastic eigensolution
O(r*1) from Appendix 4, with p’ = 0 everywhere. The result is that

—f ape d2 dt =J (o uy— oy u)n;dC. (197)
Q c

The dual solution in (194) is chosen to be the field which is singular in the pressure
p =1 cos (m0/2p). (198)

The elastic eigensolution in (194) is not used as the time independence removes it.

fK 1) dt = fp+aerleQ+jf ( W _ g%)dCdt. (199)

5. Conclusion

Ancillary methods have been discussed for deducing the coefficients of singular
near crack and notch tip stress fields and pore pressure gradients. Methods based on
reciprocal theorems in Laplace transform and real time domains have been discussed.
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For both of these methods auxiliary ‘dual’ functions are required, which enable the
near tip singular behaviour to be determined, and, by satisfying appropriate
boundary conditions, allow the integrals involved in the reciprocal theorem to be
moved far from the crack or notch tip. For the case of notch problems in
poroelasticity, where the pore pressure and elastic fields are fully coupled, such
‘complete’ dual functions are difficult to determine, and simpler functions, which
satisfy some, but not all of the necessary boundary conditions have been determined
§2d. These functions are relatively easy to compute, but the method will then require
some integrations to be taken along the crack or notch sides. For the special case of
crack tip stress analysis ‘complete’ dual functions can be obtained in the Laplace
transform domain by the methods of [AC], [CA] (§2b(ii)), thus enabling the ancillary
integrals to be removed from the crack tip. These ancillary solutions, although
complicated and violating the physical edge conditions, can also be used, as
eigensolutions when singular perturbation methods are used: a fact we hope to
exploit in the future. For the real time reciprocal theorem, dual functions are given
in §4a for the heat equation and ‘incomplete’ dual functions are derived in §4a for
notch problems.

In §3 a different method is considered based on a ‘pseudo’ energy—momentum
tensor. For the fully coupled poroelastic equations, this method enables a simple
determination of a relation between near crack tip stress and pore pressure gradient
intensity factors (cf. Atkinson & Smelser (1982) for applications in thermo-
viscoelasticity). Moreover, by careful choice of an appropriate problem —a
displacement-free strip boundary with uniform pore pressure applied on its sides and
a stress-free impermeable, central crack — it is possible to let the strip width tend to
infinity and recover the problem of a semi-infinite stress free crack loaded with a
uniform pore pressure gradient in an infinite medium. This leads to the result (174)
§3a (v) which serves as a quite remarkable check on the complicated analysis of [CA].
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thanks the SERC for a Research Studentship.
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Appendix 1. Transform results
If F denotes the Fourier transform operator, then
F1(1/€04%) = 2" Hx) /i y(n+1), (200)
where 7 is an integer, y is the gamma function defined to be
y(n+1) = f tretdt (201)
0

and the result that y(z)y(1—2) = m cosec (nz) has been used. Hence

Fo (@) = y(n+3) (i/§)1 (202)

and F ((—x)"%) = F¥(@@" %), i.e. the complex conjugate of the equivalent plus
transform.
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Defining I'* = £*+a® where I has branch cuts from +ia to +ico we can evaluate
following inverse Fourier transform

~I'y —ar 1
F_l(e >= Lo ye™ 1 0850, (203)
)~ @rifrr—af @R

=1

This is obtained by collapsing the inversion integral around the branch cuts for I"and
then evaluating the resulting definite integrals using 3.962 of Gradshteyn & Ryzhik
(1980). Note that > = 2*+y* and ® =7 cos 0, y = r sin 6.

The following recurrence relations between the K, (z) from 8.486 of Gradshteyn &
Ryzhik (1980) are also required in the text

dK,(z)/dz = (v/2) K,(2) = K,,,(2), (204)
dK (2)/dz = =K, ,(2) = (v/2) K (2). (205)
Appendix 2

Useful results from [AC] and [CA] are noted here for use in the text.
Define

N(E) = £~ |¢ €+ D} 7. (206)
From contour integration we find
N_(é)) 1 J ' (p(l —p2)%) dp
In =)= ——| arctan |———~|——. 207
(—No 0 p*=7 Jp+ig 200

Although initially defined in the lower half-plane, by analytic continuation this
defines a function valid in the whole complex plane except for the branch cut ie to
i. As the above integral has finite range it can be formally expanded for large £ to give
the following asymptotic result.

N L0 J ! arctan (ﬂ?ﬁ) dp. (208)

—N, n€ Jo p =7

As N(§) ~ —N,+0(£7?) for || —>oo this implies that,

N (&) ~ 1—%€J1 arctan (z)—%z—__—%zf) dp. (209)
0
The results above imply that N,(0) = (1 —»)/(1—»,)).
Define
ky()+E(€) = 1/N_(E) I(§) & (210)

We note here that in the sum split of k(£) in [AC] there is a typing error in (197) which
should read

1 [ K() =_1_J1 dy ( 1 _N+(O))
2 o€ T x) Gy r D - V) g ) @11
As |§] »0
by = o+ (N(0)/7—d) €7 = (iN, (0)/27 + @) £ + .. (212)
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and ‘
1 N (0)),_ ANL0) 1 TN\ ,_
k_——c +(d-—————+_—) 1+(w+11(—+_—+—+— ok 213
0 N() 7 g 2 7 N() No g ( )
where ‘
2 [* (p(l—pz)%)
I == arctan |————=|dp, 214
nJo pz-ﬁ P ( )
—1(* dy ( 1 N+(O))
Cop = —+T— 3 1 P s 215
TN R TR A SR 219
—1(* dy ( 1 N (0))
d=— 1 i - +_ s 216
© o l—p V(=) 7 (216)
i (* yidy ( 1 N+<0>>
w=— . — ), 217
ﬂjo (1—y\N_(—iy) 7 217)
Define B
NE) = (&/I') (I —|&)—7. (218)

The Cauchy representations for N, can be deduced as

+ 00 AT lnN (g)’
s f In (V)N g, _ [N (219)
2miJ_,  z—¢& 1111 (N_(&)/N,),
noting that N(£) has zeros in the cut plane at £ = +ix where a is given by
_ (- =)+ @ +4pp
oy ( o , (220)

we can deduce that N(£) has branch cuts from +ie to +ix. The branch cut from 0 to
+iis due to the cuts for the functions contained in N(£). As N(£) is negative from +i
to tia the logarithm is not defined; however, from analytic continuation the
logarithm is defined correctly outside this interval, so the branch cut extends to +ic.
This can be checked numerically by following the argument of the complex logarithm
in the complex plane.

N@\_L[ v dp | (a+i
ln( N, )-—nfo arctan ((p2+17)(1‘_p2)%>p+ig+ln (1+i€>. (221)

Although initially defined in the lower half-plane, by analytic continuation this
defines a function valid in the whole complex plane except for the branch cut from
ie to ia.

The result for N, is the complex conjugate of Ny N_(£). The expression for N_(£) can
be evaluated in the limit as |£] —o0

N_(&) 1 L P
N0_~ 1+E<a—1+'ﬁfo arctan (W)dp>+ (222)

Note that N,(0) = N,(0) = ((1—»)/(1—v,))}. This is checked numerically in both
[CA], [AC] and in [CA] is used in the asymptotic limit as {0 to prove that in the

unmixed cases the stress intensity factors are the same as those for a crack tip
embedded in a drained inclusion.
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Define - ., - B
k() =TI /N_& =k (§)+k_(£),

where k& has branch cuts from +ie to +i and a pole at ia.

o r. _r,(1 1
K& =kHo-a5'5 =& (N_<g) ‘_<0>)’

P € ) 77 S SRR
K& = f G—ib s (N_(—iy) N_<0>)’
— F+ 1 1

R (§)= g—g(ﬁ_‘m)_l{*(g)'

The asymptotic behaviours of k., k_ as || >o0 are

(L+J)+i(~—1—+—>+
N ) TeaN oY)

k+(g) ~ é
1
(

_ 1/1 -\ 111 1 T
f ey el re) R

where

Appendix 3
The displacements, stresses and pore pressure for tension are

_W, g @Y G0
T (1—2v,)020y @ ox’

Uy

" = —2(1—v,) 0¥ Y ©2Y’+&a_¢
2T (1—-2v,) y (1—2v,) 0y G dy’

P =2Qu ¥/ + (c/k) V2D,

3 _20(525’2 2, PV y OV 6,00
1 22 (1—2v,) oy*  (1—2v,)02%0y G Oy?

y PV QR0
-9 Tu
T1z G((1—2vu)6xay2+ G xdy)’

3 -1 oy y ¥ G,
Tee = 2G((1—2vu) oy +(1—2vu) R _E—a}?)'
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The application of invariant integrals
In the Fourier transform domain these are

iEy|EB, _itG, , ) 0 g oo

%= (_ig’Bl+(1—2u )@

uy = e H(B) (1—2v,)7 (2(1—»,) ||+ yE") — 4,(G,/G) |E]) — (G, /G) A, Te™ ",

p= 2Qa§231e_'§'y+ C/K o F2—§2)e‘ry,

1 =2G(1=2v,) B e M (y |£| —1)—2G (4, Ee ¥V + 4, e7"Y),

0 = —2Gyig2 B, e V(1 —2v,)7 1+ 26, 1£(|E|A, e7¥¥ + T4, e 1Y),
= = 26(1 =20, €2 B, e EU(1 -+ gIE]) + 2G,, £, eV + A o)
The displacements, stresses and pore pressure for shear are

QZ_I_ Y 62‘I’+G foley
ox  2(1—v,)0x0y G w’

U, =

—(1—2v,)00 y Y (G,00
2(1—v,) qy 2(1—v,) 0y? q 6y

2 3 2 2
_2G(6Y’ Y FY v, a&”)_zaﬁ_¢

Uy =

0z 2(1—2p,)02%0y (1—v,) Oy? “ oy’
2 3 2
=QG( S aav) o
2(1—v,)0xdy 2(1—v,)0xd% Oz Oy

_ y TH) o TP
To2 = 264(2(1 ) ayf) 2005

aQ(l—2v,)*Y¥

_Cye ° T
—KV¢+ A=v) o

In Fourier transform space:
(g (Y O Gy,
Uy = ( ( —) ig)— “a —4,==% 7 ©
o-lEv B

Uy = 2(1—_1}:)((1 —2v,) |4 +yg2)_%(Al £ e 8 4+ A, [e~Tv)

L2 —lély 2 —lély
oy = 2G( B, yE el Bye )—2Gu(A1g2e—lﬂy+A2F2e—Fy),

(I_Vu) 2(1_Vu)

e lély
Tro = Dt (61— yE%)+ 26, (4, e+ 4, T ),

L2 =&y

c

p= _(1"2_g2)Aze—Fy+aQ(1 _2Vu)Bl gze_my.
K

(1 _Vu)
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Appendix 4. The near fields (elastic eigensolutions)

The following results are well known but are given here as the results are used
widely in the text.

To get the tensile stress intensity factors in the neighbourhood of the crack tip it
is necessary to know the structure of the stress, pressure and displacement fields
there. In the near vicinity of the crack tip, i.e. as r—0, the term in V2p in (21) is
dominant. Thus the equations become mathematically equivalent to those of
uncoupled thermal stress. In the neighbourhood of the stress singularity the pressure
equation can be assumed to reduce to

V2p = 0. (256)

We also introduce a stress function ¢ such that

_13g, 1% g a(1a¢)
rar T T =g = 3\00) (257)

rr T
So the elastic equilibrium equations reduce to

Vig = 0. (258)

In what follows all the field variables are assumed to be in the Laplace transform
domain and the notation @ will be used to denote the Mellin transform of a.
Using the Mellin transform define

+ 00 (9}
¢ = f "2 (r,0,s)dr, 7, = f ™ ay,(r,0,s)dr. (259)

0 0

Then B B B B
G =—A—1)¢+d*¢/d6?, &,,=Ad¢p/dO, &y = A(A—1)¢. (260)
To invert
1
—(A-1) =—1 &,

o= om ¢7’ da, oy 5% ), Ty hdA, (261)

here Br is the Bromwich inversion contour. To deduce the angular form of the
stresses in the neighbourhood of the crack tip we take the following boundary
conditions on 6 =+ §:

(o‘ for r<1,
oalr, £B,8) =

‘lO otherwise, (262)
o,(r, £ 0,8) = 0Vr. (263)

We define the Mellin transform of & as
F=oc(A+1)7t for RA)>-—1. (264)

As the tensile problem is symmetric the solution of the Mellin transformed
biharmonic equation is

¢ =A cos (A+1)0+C cos (A—1)0. (265)
Phil. Trans. R. Soc. Lond. A (1992)
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From the boundary conditions

—asin (A—-1)8) _’ F(A+1) sin (A+1)p)

T2 (sin 2A8+ A sin (28))’ ~ A (sin 228+ Assin (28)) (A—1)° (266)
The displacements can be deduced from
2607, = (A—1)g+ (1—v)dy/db, 1
T - (267)
20u, = —dg/d6—(1—v) A+ 1) 7, |
where Y =44(A+ 1) sin (A+1)0 (268)
with u; = L wyr A dA. (269)

2mi J g,

The transforms can be simply inverted using the residue theorem by noting the

simple poles at the zeros of
sin 248+ A sin (20), (270)

which for the crack (8 = ) are A = +3(2n+1),n =0, £1,...(and at A = —1 for gy).
Note that we are here only considering angles f such that f* < # < n and g* is the
root of tan 28 = —2p. The angular behaviour of the field variables can then be
quickly deduced. In general

p = K,(s) (2m) 2t D726 o5 ((2n+ 1) ©0/2), (271)
= (1/2(2m)F) K, (s) (A+3) sin (A—1)f cos (A+1) 6
—(A+1) sin (A+1) B cos (A—1)0)r 271, (272)
0,9 = (1/2(21)%) K, (s) (A+1) (sin (A+1) 0 sin (A—1) B—sin (A +1)
Bsin (A—1)0)r 271 (273)
= (1/2(2m)%) K,(s) (A+1) cos (A—1)G sin (A+1) B
—(A—1) sin (A—1) B cos (A+1)6)r "1, (274)

20u, = (K,(s)/2A(2n)8) (— (A—1+4(1—v)) sin (A—1) B cos (A+1)6
+(A+1) sin (A+1) B cos (A—1)6)r™, (275)
2Gu, = (K,(s)/2A(21)%) (A +1) sin (A—1) @ sin (A+1) 8

—(A+1—4(1—v))sin (A—1)Bsin (A+1)0)r 2. (276)

Appendix 5

Unfortunately in Atkinson & Craster (1991) the following typing errors occurred
and we take the opportunity of correcting these errors here.

Ny =3(1—7), (10)
¢ (iN.(0) o Lyi/an) ([, M@\ (i (1)) g
T A ey G i | G )
(80)

Phil. Trans. R. Soc. Lond. A (1992)
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262 C. Atkinson and R. V. Craster

- [Tl (i/ay)( N+<0)_(i)( B (_)))
KZ(S)_{S%KW+(i/“1)( i n a Co= ks a

42 E<M+w)}ei"/4(§)z(—2\/2)’ (86)

24, k 27 c
p ~ (—aV(1—2v) K, /4cG(2n)F) cos (30/2)+ K, cos (16)) 7, (168)
1 [ K(z) 1f1 dy ( 1 N+(O))
— | =Zdz== 4 . a——A R 197
i o= m o (iy+&)yr(l—yp\N_(—iy) 7 (199

_ (L+(1=2v) T,/ Gc,)
1= U o e TG,

(219)
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